
 

Paper from proceedings of the CAADfutures’99 Conference Computers in 
Building (Godfried Augenbroe and Charles Eastman eds) Georgia Institute of 
Technology, Atlanta, USA 1999. 

The BAS•CAAD information system for design – 
principles, implementation, and a design scenario 
 

Anders Ekholm and Sverker Fridqvist 
Computer Aided Architectural Design, Lund University, Lund, Sweden 

Keywords:  CAD, design, dynamic schema evolution, information systems, object oriented 
modelling, product modelling, design scenario 

Abstract: The objectives of the BAS•CAAD-project are to investigate into theories and 
methods for computer aided architectural design, with emphasis on 
requirements of early stages of the design process.  Information systems can 
be characterised as static or dynamic concerning the definition of classes in the 
model schema, and concerning classification of model objects. The paper 
presents the BAS•CAAD system, a prototype software that implements the 
conceptually most important features of a dynamic information system for 
design.  The BAS•CAAD information system is built on a generic ontological 
framework.  The system allows a free combination of attributes, supporting the 
incremental way that knowledge is built up during design.  It provides a 
generic library structure that allows definition of objects classes in different 
levels of generalisation that may originate from international standards or the 
individual designer.  For example, in the construction context, it allows 
modelling of buildings and their parts, as well as user organisations and user 
activities.  The function of the system is illustrated in two scenarios. 

1 INTRODUCTION 

In a computer integrated construction process, information is generated, used 
and communicated through computers. In order to enable computer based analyses 
of the products and processes developed, this information must be model based.  
This concerns not only building information, but also information about other 
objects, e.g. the user organisation, the site, the construction process, and the facility 
management process. 

The questions of the structure of building product models and the 
communication of building product data between different actors and computer 



systems have been given much attention within construction information research.  
Analyses of characteristic features of such models in the construction context have 
been done by Björk (1995) and Galle (1995).  Lately, principles for structuring 
computer based information about the user organisation have been discussed, see 
e.g. Eastman and Siabiris (1995), Ekholm and Fridqvist (1996 and 1998), Maher, 
Simoff and Mitchell (1997).  

Many approaches to product modelling focus only at modelling, and seem to 
overlook the process of creating the models.  The most outstanding feature of this 
process is that the information changes and evolves over time, not only in quantity 
but semantically as well.  This would make it hard to use a product modelling 
system based on a fixed classification schema in the earliest, most dynamic phases 
of design, since the fixed schema would be at odds with the evolving semantics of 
design.   

This paper presents the implementation of a prototype information system, 
which has been constructed as part of the BAS•CAAD research project.  The project 
aims to find solutions to both the problem of modelling different products and 
processes, and the need to reflect and support the evolving nature of the design 
process.  

2 INFORMATION SYSTEMS FOR DESIGN 

2.1 Design problems 

Design is a problem solving process, it is similar to problem solving both in 
everyday life and science.  Problem solving is a process of exploration, where 
solutions are alternately hypothesized and tested.  In the process, the properties of 
the hypothesised object are determined in an incremental manner, the designer adds 
and removes attributes from the conceptual representation of the object.  

A problem statement is a description of an object whose state, according to certain 
presuppositions or objectives, is unknown, or unsatisfactory.  The state of an object 
is its attributes at a certain stage of time.  A problem solution, or hypothesis, is 
information that describes the state of the object, or action that leads to a satisfactory 
state.  Design problems are procedure problems, they deal with questions of human 
action (Bunge 1998:208).  The test of a design hypothesis may be theoretical, 
relating the solution to existing knowledge, or empirical, involving the construction 
of an artefact. 

A design problem may be characterised as open or closed concerning the 
determining factors of the designed artefact, e.g. in building design such factors are 
environmental impact, user requirements and available technology.  To a closed 
problem, the determining factors and their combinations are well known, while to an 
open problem neither the determining factors nor their combinations are known, but 



must be explored or invented.  Open problems are also called ”wicked” (Rittel 
1984). 

Design can also be categorised as routine or innovative.  Routine design is a 
closed problem solving process, it consists in selecting a prototype solution and 
determining the values of its attributes.  Innovative design is necessary when no 
such prototype solution can be applied, and new kinds of things or new uses for 
known things have to be created.  Building design is an example of both routine and 
innovative design, the latter especially during early stages.  The approach to 
building product modelling today, e.g. in object-oriented CAD programs, does not 
support innovative design and is best suited for the later stages of the design process.  

2.2 Dynamic and static information systems 

An information system is a computer based system which makes it possible to store 
and retrieve information of relevance to the information needs of a user. It consists 
of a conceptual schema, an information base and an information processor (ISO 
1985:15).  In a traditional implementation, the classes of the conceptual schema 
refer directly to the objects in the domain of discourse. A specific model of an object 
is achieved through selecting an appropriate class in the schema and determining the 
values of the attributes that describe the object in the information base. 

In the BAS•CAAD project, we have found that information systems can be 
characterised as dynamic or static concerning the possibility for the user to 1) define 
new class concepts in the conceptual schema, and 2) classify model objects. These 
two characteristics are mutually independent, see Figure 1.  

 

Figure 1: Dynamic and static information systems 

The four kinds in Figure 1 are: 

a) Static systems: the user is restricted to a predefined set of modelling classes, 
model objects have to retain their classification once instantiated into the model. 

b) Dynamic classification: the user is restricted to a predefined set of modelling 
classes, but can reclassify model objects between these classes during modelling. 

c) Dynamic schemas: the user can create new classes, but cannot reclassify model 
objects during modelling. 



d) Fully dynamic systems: the user is free to create new classes and to reclassify 
model objects between all classes, predefined and new, during modelling. 

The literature on information systems, e.g. (ISO 1985), describe systems that belong 
to category A, but the terminology and theory can be used for all kinds of system in 
Figure 1.  A static, or closed, classification is often suitable for a routine design 
process, which presupposes a high degree of detailed knowledge about the domain 
of discourse; however, it is not suitable for a more search-like innovative design 
process.  

2.3 The BAS•CAAD approach to dynamic modelling  

Through developing a design schema (see section 0) that defines and relates 
classes that only indirectly and in a generic way refer to the domain of discourse, it 
is possible to create a dynamic modelling system.  Instances of these “meta”-classes 
are used for the development of model schemas that describe and directly refer to 
the members of the domain of discourse. 

The domain of implemented meta-classes is orthogonal to (independent of) the 
domain of runtime data or instances.  The user of an information system has access 
only to the latter; the former is available to the system developer only.  In the static 
approach, the model schema resides in the domain of implemented classes, and thus 
is not open for user manipulation.  In the BAS•CAAD system, we have made 
possible both dynamic classification of design objects and dynamic definition of 
classes by ‘sliding down’ the model schema from the domain of implemented clas-
ses to entirely reside in the domain of instances, see Figure 2. 

 

Figure 2: The model schema is ‘slided down’ into the domain of instances. Arrows symbolise 
superclass-subclass relationships; arcs symbolise instantiation 



The traditional static or hardcoded approach is not in every respect inferior to the 
dynamic approach; one of its advantages is that it is easier to ensure consistency in a 
fixed class structure.  Dynamic systems, such as the BAS•CAAD system, have to 
implement mechanisms for dynamic consistency checking.  Also, since in the static 
approach a definite set of classes is implemented, only operations for managing 
these classes are needed . In contrast, a dynamic system must provide operations on 
a generic level, which is a much more complex task.  The static approach is 
especially fit in situations where the modelling context is very specific and 
beforehand well known, such as creating information systems for routine design. 

A more thorough discussion of information systems for design can be found in 
(Ekholm and Fridqvist 1998). There, we defined that information systems for design 
must: 1) support representing objects in the domain of interest, 2) be able to 
communicate with other software, 3) support defining the design goal, and 4) have a 
dynamic object structure. 

Most proposals for product modelling software focus on the first two 
requirements.  To be useful not only for describing the results of the design process, 
but as a tool in this process, an information system for design must have all 
properties mentioned above. This is also discussed by e.g., Eastman and Fereshetian 
(1994), Eastman, Assal and Jeng (1995), Galle (1995), Junge, Steinmann and Beetz 
(1997), Leeuwen and Wagter (1998), and Ekholm and Fridqvist (1998).  

3 FOUNDATIONS FOR THE BAS•CAAD 
INFORMATION SYSTEM 

3.1 The ontological framework 

The BAS•CAAD information system is intended to cover all levels of 
generalisation of modelling in the construction context, from international 
classification standards to specific buildings. It is built on a generic ontological 
framework including systems and property theory, with the object classes thing 
class, relation and unary attribute see Figure 3.  It allows models to be multi-
contextual; that is, several contextual views can be co-ordinated in one model.  For a 
detailed account of this framework, see Ekholm and Fridqvist (1998). The 
BAS•CAAD information system supports generic design operations, like 
generalising and specialising, aggregating and decomposing, and adding and 
removing attributes; for an account of design operations, see (Fridqvist and Ekholm 
1996).  

In Figure 3, the ontological framework is depicted as an EXPRESS-G diagram.  
The figure differs from the one in (Ekholm and Fridqvist 1998) in that the entity 
Attribute is now named UnaryAttribute.  In addition, the superclass BAS_CAAD 
object is removed. 



 

Figure 3: Ontological framework of the BAS•CAAD information system 

3.2 The design framework 

Artefact design can be characterised as making statements about the designed 
thing and a desired ‘satisfactory situation’ that the artefact is to support. Statements, 
or predicates, consist of attributes of different kind; in case of design, these represent 
properties of the designed artefact.  The classes in conceptual schemas are such 
statements or predicates, made up of one or many attributes.  For a more detailed 
account of this, see (Ekholm and Fridqvist 1998).  An information system for design 
should accordingly at least be able to record such statements.  The statements, of 
course, need not be verbal.  Also 2D drawings or 3D models or parts thereof can be 
treated as statements.  The BAS•CAAD information system is designed to collect 
such statements and to support analysis and communication of them.  

A model is defined through a consistent collection of correct statements 
involving the three basic classes of the ontological framework in Figure 3.  The 
schema in Figure 3 is not suitable for a direct implementation as a design tool, since 
it implies that all connections between objects must be established.  The trouble with 
this is that some connections might imply statements that the designer would not 
intend.  For example, some things are used in numerous different environments; it 
would not be desirable to have to include all these environments in the definitions of 
thing classes like ‘bolt’ or ‘nut’.  Instead, we have found that all information 
necessary for the creation of such a more suitable design schema is contained in the 
set of design statements made possible through the schema in Figure 3. 

The attributes of the entity ThingClass in Figure 3 reflects that it can be defined 
as a 6-tuple of sets of attributes, T = (TG, TC, RI, TE, RE, AU).  Given the 
BAS•CAAD ontological framework, only seven different types of statements are 
possible.  The first is the statement “there is a kind of things, called T”; this 
corresponds to creating ThingClasses.  The other six statements implies to add 
attributes to the six sets mentioned above: 

� TG: A T-thing is a kind of Y-thing (= kind T is a subkind or specialisation of Y). 
� TC,: A T-thing is composed by a P-thing part. 
� RI,: A T-thing is internally structured, so that any part of kind P1 is related to 

any part of kind P2 by an RI -relation. 



� TE,: A T-thing has an environment which includes an E-thing. 
� RE: A T-thing is related by an RE-relation to any E-thing in its environment. 
� AU: A T-thing has the unary property Q. 

The BAS•CAAD design schema in Figure 4 has been developed for the data 
structure to be implemented. Design data are stored in instances of 
ThingClassDefinition, which collects instances from the six subclasses of Attribute 
that correspond to the six different kinds of attributes. The classes 
RelationDefinition and UnaryAttributeDefinition define relations and unary 
attributes, and ensures that attributes referred to in several places are identically 
defined.  

 

Figure 4: Object structure of the BAS•CAAD design schema 

3.3 Other features of the object structure 

Besides generating and maintaining the object structure, the prototype currently 
supports a simple schema for object identification, inheritance and specialisation of 
attributes, and class libraries. Additionally, class subsumption is planned to be 
implemented. 

3.3.1 Object identification 

The BAS•CAAD information system for design allows thing classes to be 
defined by references to predefined libraries (see section 4.3).  Such a mechanism 
requires that libraries and classes can be unambiguously identified, in order to 
ensure that the correct libraries are used. The current version can identify objects 



within a library, but there is no secure identification of libraries. The development of 
such a mechanism is a task for database specialists and international standardisation 
organisations, and outside the scope of this phase of the BAS•CAAD research 
project.  

3.3.2 Attribute inheritance 

Class attributes indicate a more generic kind, also called a superclass.  All 
statements defined for the superclass are also valid for the subclass; the attributes of 
the superclass are inherited attributes of the subclass.  An example: the class House 
has the attributes ‘man-made’ and ‘provides dwelling’.  If Palace is defined by the  

 House Palace 
Defined attributes man-made 

provides dwelling 
kind of House 

Inherited attributes  man-made 
provides dwelling 

Figure 5: Defined and inherited attributes 

attribute ‘kind of Building’, Palace inherits the attributes ‘man-made’ and ‘provides 
dwelling’ (Figure 5) A mechanism for attribute inheritance has been implemented. 

3.3.3 Attribute specialisation 

However, with the above set of attributes, the Palace class doesn’t reflect that a 
palace is a specific kind of house. This type of difference can be defined in to ways; 
either by adding a new attribute to the specific class, or by specialising an inherited 
attribute. Which way to choose is a question of clarity in modelling and usefulness 
of the model; se Figure 6 for a illustration of the differences of the two methods in 
terms of sets. 

 

Figure 6: Classes and subclasses 

In this case, we have chosen to specialise the attribute ‘provides dwelling’ into 
the more specific ‘provides luxurious dwelling’, and to define the class Palace with 
the specialised attribute.  A mechanism for this has been implemented. The new 
attribute is defined to substitute the inherited attribute ‘provides dwelling’ in the 
Palace class, Figure 7. 



 House Palace 
Defined attributes man-made 

provides dwelling 
kind of House 
provides luxurious 
dwelling 

Inherited attributes  man-made 
provides dwelling 

Figure 7: Attribute specialisation 

3.3.4 Class subsumption 

Description logics (see next paragraph) provides a mechanism called 
subsumption.  This could be described as the inverse of inheritance, since it answers 
what superclasses a given class has according to its set of attributes.  For instance, if 
a thing Bungalow has the attributes ‘man-made’ and ‘provides dwelling’, then it is 
subsumed to be a kind of House, i.e. the class Bungalow is a subclass of the class 
House.  Subsumption is not currently implemented in the BAS•CAAD prototype 
system, since it would make implementing inheritance more complicated.  However, 
since subsumption could arguably provide a powerful tool for case retrieval, it will 
probably be implemented in a future version of the BAS•CAAD system. 

Description logics (DL) is a field within artificial intelligence research, and is 
based on first order predicate logic.  It aims to develop mechanisms for describing 
concepts, and to automatically classify concepts. . DL system implementations are 
usually similar to programming languages (Lambrix 1996). Although DL is similar 
to the BAS•CAAD approach in many ways, it seems that it cannot serve as the base 
for a design information system.  

4 THE BAS•CAAD PROTOTYPE INFORMATION 
SYSTEM 

An objective of the BAS•CAAD project is to support expression of objects in a 
computerised database during design. The prototype is intended to study the 
feasibility of organising an information system based on the BAS•CAAD schema. 

The prototype displays some features we consider important in an information 
system for design, but it is not intended for productive design work.  The current 
version is centred on building symbolic schemas for concepts referring to things, 
and lacks most of the abilities to specify measurable values necessary for a 
production tool. 

4.1 Smalltalk 

The BAS•CAAD prototype information system is currently implemented in 
Smalltalk under the Macintosh operating system. The reason for choosing the 



Smalltalk computer language was that it is object oriented, and that it supports 
explorative program development. 

In product modelling, products are structured as objects that are assembled of 
objects in several levels.  This makes it natural to choose an object oriented 
programming language for implementation. In explorative program development, 
the software needs only to be partly defined before it is executed and tested.  Thus, 
experimental solutions can be tried and kept if successful; otherwise, they are 
discarded.  This way the final software solution is obtained through exploration.   

In Smalltalk, code segments can be run and tried directly, without any time-
consuming compilation or linking procedures.  Actually, Smalltalk allows the 
programmer to change the code while the software is running, thereby relieving the 
programmer from repeatedly punching in lots of test data.  This is not possible in 
C++, a popular programming language that also supports object oriented 
programming.  Smalltalk is profoundly object oriented; every concept is treated as 
an object class. Thus, in Smalltalk it requires an effort to not be object oriented, as 
opposed to C++. A drawback with Smalltalk is that the resulting programs do not 
run as fast as those created with e.g. C++.  

4.2 Implementing the system 

The foundation for the BAS•CAAD prototype is the three concepts thing class, 
relation and unary attribute that are implemented through the corresponding object 
classes ThingClassDefinition, RelationDefinition and UnaryAttributeDefinition. 

 To create and manipulate these objects, there are, in principle, two choices: a 
command line user interface or a graphical user interface (a GUI). In a command 
line user interface, the user types commands, and then usually hits a key to get the 
command executed. A command line interface requires developing a command line 
interpreter, a piece of software that can translate the command lines into software 
actions and input data.  A problem in software design is to create software that 
correctly interprets the user’s intentions.  A GUI features a set of standardised tools, 
each having a specific function.  The user controls the software via the buttons, 
menus, text input fields etc.  Thus, the software developer can restrict the user to 
input only such instructions or data that are valid.  

Regarding these concerns, the choice fell upon a GUI as the method to interact 
with the software.  The Smalltalk dialect used for the BAS•CAAD prototype 
(Smalltalk Agents, STA), provides generic classes of GUI components, such as 
windows, menus, buttons etc. These can be subclassed and modified to suite the 
particular needs of the software being developed. 



 

 

Figure 8: Examples of user interface windows 

Windows communicate with the corresponding model objects through messages. 
Each user interaction with a window causes at least one of the window’s methods to 
be executed. This results in messages being sent to the model object, which responds 
with the appropriate actions. Finally, some messages are sent from the model object 
back to the window, to ensure that the window reflects the new state of the model 
object. 

In the current BAS•CAAD implementation, there are windows for the three 
main classes, and in addition to this, there are windows for specific tasks, such as 
adding different kinds of attributes to thing class definitions, see Figure 8.  Most of 
the work with the development of this prototype system has been, and continues to 
be, to decide how to obtain the desired functionality. To perceive a user action in the 
terms of objects exchanging messages is a complex task. One particularly difficult 
question is to decide what object is the agent, and what objects are acted upon. The 
reason for this is that many objects may be involved in the execution of one user 
action, with many messages exchanged. If the resulting web of such message 
interchanges is too entangled, the programmer is likely to get lost. Additionally, 
there is a need to make the software code as intuitive as possible to any future 
programmer (which, incidentally, often is the same person, but a couple of days 
later). 

4.3 Libraries 

The purpose of the BAS•CAAD system is to record information about concrete 
things during the design process.  Acknowledgeably, defining a coherent conceptual 
understanding of the concrete world from scratch is a very demanding task. To 
allow the BAS•CAAD system to be used in normal design situations, pre-defined 
well-considered schemas of Thing Classes have to be provided in libraries, from 
where the designer can fetch definitions to build up his design database. 



In order for the BAS•CAAD system to function in the construction context, it is 
necessary that its libraries contain attributes and classes belonging to established 
building classification systems.  Today, these systems are not structured for use in 
the early design stage.  The classes are mostly combinatory, i.e. built up from 
combinations of several attributes.  One example of such a classification system is 
the BSAB system, a de facto Swedish construction industry standard.  In order to 
implement a classification system into a system for design, including the earliest 
stages, it is necessary to make the constituent simple attributes availlable. The 
BSAB system would be the natural choise for analysis for an application to the 
Swedish context.  

Principles for structuring product libraries are developed as part of the STEP 
standardisation activity, the so called Parts Lib work (ISO 1997).  An example of the 
development of an operational class library is POSC/Caesar with its Reference Data 
Library for documentation of facilities for the oil and gas industries (POSC/Caesar 
1999).  

The current BAS•CAAD prototype provides an ontology for and supports class 
libraries.  Objects in libraries can refer to objects in other libraries, so that 
hierarchies of libraries can be created.  This feature is implemented to explore a 
mechanism that would allow international and national standardisation organisations 
to create generic libraries. Clients, building material providers, and others can then 
create intermediate level libraries that can be used as references in specific building 
projects.  

The concept of class library has been generalised, so that library is the sole 
format for databases and files. Thus, the work of any level of specificity can be the 
foundation for further specialisation. For instance, it would be possible to use the 
project file from a window designer as a library file in a building design project 
without any reformatting or reclassification. 

5 TWO DESIGN SCENARIOS 

5.1 Coordinated design of user-organisation and building 

This section describes how the BAS•CAAD system can support actual design 
through two scenarios.  The first scenario describes the task of designing a building 
for Mr and Mrs Smith’s small business.  The object of design is on one hand the 
building, and on the other hand the activity to be carried out inside the building.  To 
document this knowledge, we create two Thing Classes, Business-building and 
Business-activity.  We also add attributes that define them to be each other’s 
environments. 

THINGCLASS Business-building 
ENVIRONMENTATTRIBUTE Business-activity 
EXTERNALSTRUCTUREATTRIBUTE provides-environment-to Business-activity  



 
THINGCLASS Business-activity 

ENVIRONMENTATTRIBUTE Business-building 
 
Our task is now to develop the design, and to document the knowledge we may 

collect during the process.  In the BAS•CAAD system this is accomplished by 
creating additional Thing Classes and by adding attributes to them. 

When consulting the Smiths, we learn that the main activity of their business is 
decomposed into two parts, workshop and office work.  We document this with two 
Thing Classes, Workshop-activity and Office-activity.  The new Thing Classes are 
attributed as parts of Business-activity through composition attributes.  The Smiths 
also tell us about the shape and size of the two activities.  This information is added 
to Workshop-activity and Office-activity, respectively, through Unary Attributes. 

THINGCLASS Workshop-activity 
UNARYATTRIBUTE shape VALUESPACE (rectangle 8 x 15) 
 

THINGCLASS Office-activity 
ENVIRONMENTATTRIBUTE Workshop-activity 
EXTERNALSTRUCTUREATTRIBUTE administrates Workshop-activity 
EXTERNALSTRUCTUREATTRIBUTE is-adjacent-to Workshop-activity 
UNARYATTRIBUTE shape VALUESPACE (rectangle 5 x 8) 
 

THINGCLASS Business-activity 
ENVIRONMENTATTRIBUTE Business-building 
COMPOSITIONATTRIBUTE Office-activity 
COMPOSITIONATTRIBUTE Workshop-activity 
INTERNALSTRUCTUREATTRIBUTE Office-activity administrates Workshop-
activity  
 
Since we were told that the two activities don’t co-exist very well, we conclude 

that each activity needs a space of its own. Therefore the Business-building is 
divided into two spaces, Workshop-space and Office-space, which become parts of 
the building. The primary function of the spaces is to provide environments to the 
activities. This is reflected by the attributes in the definitions, which relate the 
activities to the spaces. 

THINGCLASS Workshop-space 
ENVIRONMENTATTRIBUTE Workshop-activity 
EXTERNALSTRUCTUREATTRIBUTE provides-environment-to Workshop-activity 
 

THINGCLASS Office-space 
ENVIRONMENTATTRIBUTE Office-activity 
EXTERNALSTRUCTUREATTRIBUTE provides-environment-to Office-activity 
 

THINGCLASS Business-building 
ENVIRONMENTATTRIBUTE Business-activity 



EXTERNALSTRUCTUREATTRIBUTE provides-environment-to Business-activity 
COMPOSITIONATTRIBUTE Office-space 
COMPOSITIONATTRIBUTE Workshop-space 
 
In the example above, we have seen how a design can be represented by thing 

classes from the most generic notion, and through consecutive steps of refinement to 
a more developed model.  Using the BAS•CAAD system, the design process would 
progress in a similar manner until all things in the building were described to a 
sufficient detail and uniquely identified. 

5.2 Detailed building design  

The second scenario describes how the BAS•CAAD system supports detailed 
building design including aspects like spatial, functional, and compositional views.  
Our task is to design a building, and we will use pre-defined library Thing Classes, 
representing common things and systems in building. 

To begin with, we create the Thing Class building to represent our building, see 
Figure 9 a.  Since we are interested in the spatial aspect of buildings, i.e. the ability 
to define a space, we decide our new Thing Class to be a subclass of the pre-defined 
Thing Class space.  Here, the Thing Class space represents both the spatial and 
enclosing aspects of things.  Being composed of enclosures is an attribute of the 
space Thing Class.  The enclosure attribute is inherited by the space subclasses, e.g. 
our new building Thing Class.  An enclosure, in this example, represents both the 
shape and enclosing aspects of things, e.g. prohibiting pass-through.  

In the next step of the scenario we want to subdivide our building into 
subspaces.  This is done by creating new subclasses of space, and by adding 
composition attributes to the class definition of building, that point to these new 
subspace Thing Classes, see Figure 9 b. In this schema only one of the building’s 
subspaces is shown. 

When the spaces are defined, we need to specialise the composition attributes of 
the spaces and the building, so that they are defined to be composed of things that 
specificly enclose them.  The specialised enclosures are subclasses of the generic 
enclosure thing class, see Figure 9 c. 

The enclosures of the building represent the enclosing aspect of the building’s 
exterior walls, e.g. shape and climate enclosing.  Since the space 1 faces the exterior 
of the building, some of its enclosures, too, are aspects of exterior walls.  A Thing 
Class that represents an exterior wall would need to include both aspects. This is 
done through multiple inheritance, where the wall Thing Class inherits all attributes 
from both enclosures, see Figure 9 d. 

The design process will continue by consecutively adding attributes to the model 
objects until a satisfactory design has been achieved. 



In order to have the building specified for cost calculation, tendering and 
construction, we need to define building elements and work results.  Building 
elements are pre-defined classes of functional parts of a building, and work results 
are pre-defined classes of compositional parts of buildings, i.e. things that results 
from constuction work.  In the Swedish classification system BSAB 96, we can find 
such classes. If these classes are expressed as thing classes in the BAS•CAAD 
system, we can transfer the attributes that define the BSAB classes directly through 
mutiple inheritance, thus including these aspectual views into the building model, 
see Figure 9 d. 

The tests in these relatively simple scenarios indicate that the BAS•CAAD 
system provides a suitable generic structure for product documentation, also during 
the design stage.  

 
Figure 9: Four stages of the design of a building (in modified EXPRESS-G). Grey dots 
indicate library classes. Thick connecting lines indicate subclass relationships, thin 
connecting lines indicate attributes, dotted enitities indicate inherited attributes. 

 



6 REFERENCES 

Björk B C, 1995, Requirements and information structures for building product data models 
VTT Publications 245 (Technical research centre of Finland, Espoo) 

Bunge M, 1998, Philosophy of Science Vol 1 From Problem to Theory (Transaction 
Publishers, New Brunswick, New Jersey)   

Eastman C M, Fereshetian N, 1994, “Information models for use in product design: a 
comparison”, Computer-Aided Design 7 (26) 551-572  

Eastman C M, Assal H, and Jeng T, 1995, “Structure of a database supporting model 
evolution” Modelling of buildings through their life-cycle. CIB Proceedings Publication 
180, (Eds. Fisher M, Law K, and Luiten B) (Stanford University, Stanford, Ca, USA) 

Eastman C M, Siabiris A, 1995, “A generic building product model incorporating building 
type information” Automation in Construction, 4 (3) 283-304 

Ekholm A, Fridqvist S, 1996, “Modelling of user organisations, buildings and spaces for the 
design process” Construction on the Information Highway CIB Proceedings Publication 
198, (Ed. Ziga Turk) (University of Ljubljana, Slovenia) 

Ekholm A, Fridqvist S, 1998, “A Dynamic Information System for Design Applied to the 
Construction Context” The Life-cycle of Construction IT Innovations (Eds. Björk, B-C. 
and Jägbeck, A.) Proceedings from the CIB W78 workshop, 3-5 June 1998, Stockholm, 
Sweden 

Fridqvist S, and Ekholm A, 1996 “Basic ObjectStructure for Computer Aided Modelling in 
Building Design” Construction on the Information Highway CIB Proceedings Publication 
198, (Ed. Ziga Turk) (University of Ljubljana, Slovenia) 

Galle P, 1995, “Towards integrated, ”intelligent”, and compliant computer modeling of 
buildings” Automation in Construction  3(4) 189-211 

ISO, 1985, Concepts and terminology for the conceptual schema and the information base 
ISO/DTR 9007 (TC97), also SIS teknisk rapport 311 (SIS Stockholm) 

Junge R, Steinmann R, Beetz K, 1997, “A dynamic product model” CAAD futures 1997 
(Ed.Junge R) (Dordrecht: Kluwer Academic Publishers) 

Lambrix P, 1996, Part-Whole Reasoning in Description Logics (Diss. Linköping University, 
Linköping, Sweden) 

Leeuwen J P, Wagter H, 1998, “A Features Framework for Architectural Information”, 
roceedings of the Artificial Intelligence in Design Conference 1998 (Ed. Gero, J. And 
Sudweeks, F.) (Dordrecht: Kluwer Academic Publishers) 

Maher M L, Simoff S J, Mitchell J, 1997, “Formalising building requirements using an 
Activity/Space Model” Automation in Construction 1(6) 77-95. 

POSC/Caesar, 1999, URL: http://www.posccaesar.com/snapshote/snaptoc.htm, POSC/Caesar 
Reference Data Library Accessed January 1999.  

Rittel H, 1984, In Cross N, Developments in Design Methodology (London: John Wiley and 
Sons) 

 


